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We investigate the question of the accuracy of a closed servomechanism with a 

plant described by a linear second-order differential equation and a preselected 

control law with a “saturation”-type nonlinearity. We derive an algorithm for 
determining the exact value of the maximal cumulative error on an infinite 
time interval. 

1, We consider a controlled system whose output y (1) has to reproduce hitherto un - 
known input signals z (t) from a class X of functions with bounded variation rate I x' (1) 1% 
f +,, CC (0) = 0. The behavior of the controlled plant under the action of the control 

signal v is described by the equation 

Ty +y'= (', Y (0) = Y’ (0) = 0 (1.1) 

As the control law we take the hard feedback 

~(&)=ks (/kE/<I$,f, u (E) = zig sign a (1 kc: / > x0) (f.2) 

8 (t) = x(l) -_y(G (k>O) 

where u0 is the constraint on the control signal. Subsequently we assume that m. < uo. 

The system’s block diagram is shown in Fig. 1. 

Fig. 1. 
An upper bound for the quantity 8, where 

a, = ;rna&z; gf; /Ia @) I 1 0.3) 

was derived in [l] for the control law (1.2) and for a controlled plant described by an 
n &order equation with time lag, Below, for a plant described by a second-order equ- 
ation we derive an algorithm for finding the exact value of the quantity a,, where we 
make use of another definition (which follows from stationarity), equivalent to (1.3). 

&IX = max{ max 1 ~(t)(} 
XEX t E[O, ml 

2, We denote y’ = z, x’ = a. We call u the control, and then the control 1c by which 

a ~ is realized is the optimal control. We write the equations of the closed system as 
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1 1 
p, =-_;~+rr, z’=_--- 

y’ -+7;-V(E). IUI \ ,,,I ), E (“I = ; (II) LT 0 (‘.I) 

and we consider them on a phase plane (Fig. 2). 
Theorem. The control U* which takes the value --I+, in the region z > ke and 

the value +m,, in the region z < ke is optimal (the control Q* is not defined on the 

line z = ke itself). 

Proof. Let u0 be an arbitrary control satisfying 1 1~~ 1 \_I wo. At the origin we set 
U* equal to m, sign u” (tl), where 

Fig. 2. 

1, is the first instant at which u” += 0 ; then for either 

of the controls U* and u” the representative point, 
starting at the origin, finds itself in one and the 

same region (either z < ke or z > kc), intersects the 
line z = ks, continues the motion in the other reg- 

ion, etc. We denote by Ai* and Ai’, respectively, 
the points of the I th intersection of the correspon- 
ding phase trajectories with the line z = kc and 

their coordinates by Zi* and zi” (the points Ao* and 
Aoc coincide with the origin). We assert that the 

inequalities 12;” I< / q* / < u,, are valid for all points 
Ai* and Ai”. We prove this by induction. 

The inequalities are valid for i = 0 (ZD* - zoo = 

= 0). Let us assume that the inequalities are valid 
for i = n 

I ho I Q I z,* I f uo (2.2) 

and prove them for i = PI -I- 1. Consider the phase trajectory portions AzAz+, and A,,’ 
A0 n+l (Fig. 2). For the sake of definiteness we assume that they lie in the region 2 > ke. 

Each of these portions can either intersect the line t: = -[to / JL or not intersect it. Thus, 
four combinations of these two cases are possible. Let us consider only one of them, 

namely: both portions intersect the line e = -_u,/ k (the proof is analogous for the other 

combinations). We denote by R *, C* the points of the first and last intersections of the 

knee = -u. 1 k with An*Az+l, and by B”, C’ with A,,‘A?r+,.The pointsR*. C*, B”,C-’ 

divide the corresponding phase trajectory portions into three segments. Consider the first 

segments: A,,“B* and A,,“B”. We denote by B’ the point of first intersection of the line 
&= --u,lk with the phase trajectory starting from A,,’ with IL ; -mo. Since z > ke, 

from (2.1) follows 

Hence zn, > ZBO (where zn,, zn 0 are the ordinates of points B’, B-). Taking into account 
that A,*B* and A,,“B’ cannot intersect (except in the case of identical coincidence)we 

obtain zs* & zRI and, hence zn* >, zn’ . Furthermore, from Eqs. (2.1) and inequali- 

ties (2.2) follow - ill0 * zB* , ~0, -no _ zBO ‘< uo. We now consider the next segm- 

ents: B-C* and .B’C”. Proceeding from the inequalities just obtained and reasoning ana- 

logously, we can show that z,-.* ‘; z, , ---I(~ :: z,.* ,-_ --mo, -u. (’ zco _ mO. In exa- 

ctly the same way we can show that 

for the last segments C*AT,+l and c’-A;~+~ The assertion is proved. 
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We denote by et” and ei” the maximum of is/ as we move from the points Ai* and 
Ai” upto the first intersection with the line z = ks under controls u* and u0 respe-ctiv- 

ely. Above we derived (2.3) from (2.2). By the same arguments, from (2.2) we can de- 
rive the inequality 

(2 ::I 

Thus we have two sequences: {E!?“} and (E,*), and from the way they were constructed 
there follows (t E [0, CC]) : 

=pn En0 = mas J E (t) j (u = 11O), supft F,* = max j E (t) 1 (24 = u*) {xi) 

From (2.4) ensues sup,%cn3 < SUP,~E,~*. Because u0 is arbitrary, the theorem’s validity 

follows from this and from (2.5). 

3. For u = U* a limit cycle is possible in the system described by Eqs. (2.1) and, 
moreover, the absolute value of the maximal deviation along the coordinate e in this 
limit cycle it is the desired quantity Ed. For finding the limit cycle we can make use of 

the method of point transformations c2], where as 

a consequence of the symmetry about the origin it 
is sufficient to examine only one-half of this cycle: 

to be specific let us examine the left half. We de- 
note the points of successive intersections of a cer- 
tain portion of the phase trajectory for u = u* with 

the lines z = ke and E = -uO / k by B1, B?, B,, Ba 

(Fig 3) and their ordinates by S1, S,, S,, Sq. Acco- 
rding to @] the sequence of steps to be taken to de- 

termine the limit cycle are as follows: 

1. Find the functions S, (Q), S, (ri), SZ (r?), S 3 
fr,), Ss (rs), Sa (rs),where z1 is the time taken to 

move from B, to b,, TA from i& to B,, rs from BS 

Fig. 3. 
to BL It is not difficult to obtain these functions 

because Eq. (2.1) is linear on the corresponding 

segments. We present only the final results: 
?&i - f)Z 1 

where -P f iv are the complex conjugate roots of the equation Th2 + h $ k = 0. The 
case of real roots is analyzed below. 

2. Taking rl, a, as parameters, from (3.1). (3.2) construct the graphs S, = S, (S’s), 
Ss = Ss (S,) and on their basis, taking S, as a parameter, construct the graph - Sr =: 
= - A.1 (S3). 
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3. Taking ts as a parameter, from (3.3) construct the graph SI = Sh (Ss) and find 
the point of intersection of this graph with the graph ---S, = --S, (&). The ordinate of 

this point of intersection yields the desired parameter of the limit cycle: s,*. Using this 

determine the parameter s?* from the graphs, = S, (S,). Further, we can express E~ 

in terms of SL* 
J!? + 7’ (la, + SJ*) - T (f~0 - T~I,) In 

s1* + u1 
sos= /c u,, _ ,no (3.4) 

We note that the estimate of the quantity E, presented in [l] for a plant described 
by Eq. (1.2) would have the form 

s, < $- + 7 (mu + UO) - T (UO - m) In 
2uo 

un - m9 

It differs from (3.4) in that Sa*, the ordinate of the point of intersection of the limit 

cycle with the line e = -u. I k,is replaced by its upper bound, the value u,. 
We present the results of a numerical calculation. For m, = 1, u. = 2, T = 3 and 

as k takes the successive values 1, 2, 3, 4, 00, the exact values of the maximal cumul- 
ative error e, are: 5.30, 4.85, 4.71, 4.65, 4.54, while the estimates presented in [l] yield, 

respectively: 6,84, 5~34, 5,50, 5,34, 4.84. Calculation results for other values of the para- 
meters give values of e, lying between the limits from 50 to 95% of the estimates pre- 

sented in [lj, 

4. Let us consider a system in which the control law is linear: v (e) = ke. For such a 
system it has been shown [3] that 

We analyze the case k<l / (4’1’). Here 1 ke 1 :I:. m. < uo, i. e. , the addition of the non- 
linear constraint (1.2) does not affect the system’s operation. Hence E, = m, ,/ k in (4.1) 

is valid for the original nonlinear system described by (1.1X1.2) whenk < 1 / (4 2’) . 

We analyze the case k 2 I/ (4T). Here for 5 < u. / k as before, 1 kc: 1 e; uo, and the 

s, of the original nonlinear system can be computed from formula (4.1) for the linear 
system, whence we see that E, decreases monotonically as k grows. For 5 > u. I k the 

system goes onto the saturation segment of characteristics (1.2). and the e, can be com- 
puted by means of the algorithm indicated above. Examples computed for different val- 

ues of k permit us to expect here that E, decreases monotonically as k grows, although 

we have not succeeded in proving this. 
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