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We investigate the question of the accuracy of a closed servomechanism with a
plant described by a linear second-order differential equation and a preselected
control law with a “saturation”-type nonlinearity, We derive an algorithm for
determining the exact value of the maximal cumulative error on an infinite
time interval, :

1, We consider a controlled system whose output y (¢) has to reproduce hitherto un~
known input signals z (#) from a class X of functions with bounded variation rate | =" (1) |
¢ my, « (0) = 0.The pehavior of the controlled plant under the action of the control
signal v 1s described by the equation

Ty 4y =v, =y (0)=0 1.1)
As the control law we take the hard feedback
vig) = ke {(ke|< up), vie) = ugsigne (Jke|> upy (1.2)

s()=cx(t) —y() *>0

where u, is the constraint on the control signal, Subsequently we assume that mo <C %o-
The system's block diagram is shown in Fig, 1,
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Fig, 1,
An upper bound for the quantity ¢, where

g, = lim {max max | (7} | } 1.3)
© !~oo{xEX rE[O,tl] @

was derived in [1] for the control law (1,2) and for a controlled plant described by an
n th-order equation with time lag, Below, for a plant described by a second-order equ~
ation we derive an algorithm for finding the exact value of the quantity e, where we
make use of another definition (which follows from stationarity), equivalent to (1, 3),

= max { max [s(®)]}

£
® xeXx telo, «]

2, Wedenote y == 5, " = u. We call u the control, and then the control « by which
g, is realized is the optimal control, We write the equations of the closed system as
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. . 1 1
g =—z+u, i = o2 v (e) ful| = o, () =s5() =0 (1)

and we consider them on a phase plane (Fig, 2),

Theorem, The control u* which takes the value —m, in the region z > k¢ and
the value --m, in the region z < ke is optimal (the control «* is not defined on the
line z = ke itself),

Proof, Let »° be an arbitrary control satisfying | »° | <I my. At the origin we set
u* equal to m, sign u° (¢;), where ¢, is the first instant at which u° == 0 ; then for either

of the controls u* and u° the representative point,

l : 4, /l starting at the origin, finds itself in one and the
| /;-4 | same region (either z < k& or z > kg), intersects the
5" 7”*/ | line z = ke, continues the motion in the other reg-
/ ion, etc, We denote by 4;* and 4;°, respectively,
5/ / | the points of the ith intersection of the correspon-
5’ / !L ding phase trajectories with the line z = ke and
1 u 7 Un' their coordinates by z;* and z° (the points A,* and
[ * @// R Ao coincide with the origin), We assert that the
| 9 ' inequalities |z;° | < | z;*} < u, are valid for all points
/,1,;’” | Ai* and 4;°. We prove this by induction,
i J The inequalities are valid for { = 0 (z* = 2° =
V ”” i = (), Let us assume that the inequalities are valid
. for i=n
Fig, 2, | 20° [ << 20* | S w0 (2.2)
and prove them for i = » - 1. Consider the phase trajectory portions A4y and 4,°
A, (Fig, 2). For the sake of definiteness we assume that they lie in the region z > ke.
Each of these portions can either intersect the line ¢ = —u,/ k or not intersect it, Thus,
four combinations of these two cases are possible, Let us consider only one of them,
namely: both portions intersect the line ¢ = —u,/ k (the proof is analogous for the other

combinations), We denote by B*, C* the points of the first and last intersections of the
lines == —u,/ &k with An*4),,, and by B°, C° with 4,°4, . The points B*, (*, B, (
divide the corresponding phase trajectory portions into three segments, Consider the first
segments: Ap*B* and 4,°B°. We denote by B’ the point of first intersection of the line
& = —u,/k with the phase trajectory starting from A4, with u == —m,. Since z > ke,

from (2, 1) follows do iz, Sdeidzl, .

—My

Hence zy. > zp> (where 25, 250 are the ordinates of points B’, B-). Taking into account
that 4,*B* and 4,°B’ cannot intersect (except in the case of identical coincidence)we
obtain zzgs > zp and, hence zg; > %g-. Furthermore, from Egs, (2,1) and inequali-

ties (2.2) follow — my ~ Zgs “« Ugy —My = Zge s Ug. We now consider the next segm-
ents: B*C* and.B>C°. Proceeding from the inequalities just obtained and reasoning ana-
logously, we can show that z., <z, —ug< 24 7 —mg, —uq %0 Zge "o M. N exa-

ctly the same way we can show that

| :.;H] =N R [ (2.3)

for the last segments AT, 4+ and ¢~ A . The assertion is proved,

n+i
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We denote by g;* and e;° the maximum of [g] as we move from the points 4;* and
A;° upto the first intersection with the line z = ke under controls u* and u°. respectiv-
ely, Above we derived (2, 3) from (2,2). By the same arguments, from (2,2) we can de~-

rive the inequality £n® < e (2.5

Thus we have two sequences: {e,°} and {g,*}, and from the way they were constructed
there follows (t & [0, o)) ¢

Supn e’ =max|e ()] (=1, sup,eyF=max|e(t)] (u=u* (2.5

From (2, 4) ensues sup, &, < sup,e,*. Because y° is arbitrary, the theorem's validity
follows from this and from (2, 5).

3, For u = u* a limit cycle is possible in the system described by Eqs, (2.1) and,
moreover, the absolute value of the maximal deviation along the coordinate e in this
limit cycle it is the desired quantity e_. For finding the limit cycle we can make use of

the method of point transformations 2], where as

0

! 5{*’ / a consequence of the symmetry about the origin it
{ b o is sufficient to examine only one-half of this cycle:
- _.M to be specific let us examine the left half, We de-
| & /! ' note the points of successive intersections of a cer-
7 l tain portion of the phase trajectory for u = u* with
- the lines z= ke and & = —u, / k by By, B2, By, Bs
7 7  (Fig, 3) and their ordinates by S, S,, S, Si. Acco-
| rding to [2] the sequence of steps to be taken to de~
termine the limit cycle are as follows:
1, Find the functions S, (,), S, (13). Sz (T2), S,
| (T2}, S3(13), Si(vs),where v, is the time taken to
| move from B; to B,,1: from B, to By, vy flom By
Fig, 3 to B, It is not difficult to obtain these functions
¢ because Eq, (2,1) is linear on the corresponding
segments, We present only the final results:
s — My, _ 1 plih—1 | )
Si{ti)= — mo— T e, g1(t) = - cosvh + ————sinvn 3.1)
2 NI L
S:(t)) = — my — %,l—(;—:;’ [003 vty - Mv—il—h—iﬁ- sin vn—]
Sa(ty=(ur—mo) 2 [T — ™ T) -1y, S3() = (wy —m) T2 [T (€™/ T — )7t — 19
(3.2)
S3(Ts) = — my 4 % [w cos vtz ll_ﬂ-kvv_—& sin vtsJ

Sa{ts) = — my 4 i

r k 1 2 s
A= et (B e)swvn | 09

k
€os VT3 1
32(fa)=—k—+7(1 -
where —p - iv are the complex conjugate roots of the equation 7A? 4+ A + &£ = 0. The
case of real roots is analyzed below,
2, Taking v;, T, as parameters, from (3,1), (3,2) construct the graphs S, = 5, (S),

83 = §; (8,) and on their basis, taking §, as a parameter, construct the graph — §; =
- — S; (53).

-—‘Z—) sin vts
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3. Taking t; as a parameter, from (3, 3) construct the graph S; = S, (Ss) and find
the point of intersection of this graph with the graph —S§, = —3, (8s). The ordinate of
this point of intersection yields the desired parameter of the limit cycle: §,* Using this
determine the parameter S,* from the graphS, = §; (§,). Further, we can express €_
in t 5 %
in terms of 32 “ S% 4

o = T + T (Iﬂn + S_‘*) T (un — Inu) In B (34)

We note that the estimate of the quantity ¢, presented in [1] for a plant described
by Eq. (1.2) would have the form

2uo0

u
amg-—]:——{—l(mg—{—uo)—T(uo-—mo)lnm

It differs from (3, 4) in that §,% the ordinate of the point of intersection of the limit
cycle with the line ¢ = —u, / k,is replaced by its upper bound, the value u,.

We present the results of a2 numerical calculation, For my = 1, u, = 2, T = 3 and
as k takes the successive values 1, 2, 3, 4, co, the exact values of the maximal cumul-
ative error e_ are: 5,30, 4.85, 4.71, 4.65, 4.54, while the estimates presented in [1] yield,
respectively: 6,84, 5,84, 5,50, 5,34, 4.84. Calculation results for other values of the para-
meters give values of ¢, lying between the limits from 50 to 95% of the estimates pre-
sented in [1],

4, Let us consider a system in which the control law is linear: v (g) = ke. For such a
system it has been shown [3] that

nn

Eo = T (/\<Z1T.> (4.1)

' n. . v T—P [ T
8o =L (Mo, K, T, §=T-+-zt,/ . ;n;exp(— TTv )[1—exp<-—ﬂ>

¥ == arctg (2T'v) (/ = "11‘-)

We analyze the case k<71 / (41). Here | ke | < my < u,, i, €., the addition of the non-
linear constraint (1, 2) does not affect the system’s operation, Hence e = m,/ k in (4,1)
is valid for the original nonlinear system described by (1,1X1.2)whenk < 1/ (47),
We analyze the case & > 1/ (4T). Here for { < u,/ k& as before, | ke | <{ u,, and the

g, of the original nonlinear system can be computed from formula (4.1) for the linear
system, whence we see that ¢, decreases monotonically as & grows, For { > u,/ & the
system goes onto the saturation segment of characteristics (1,2), and the ¢, can be com-
puted by means of the algorithm indicated above, Examples computed for different val-
ues of & permit us to expect here that &, decreases monotonically as & grows, although
we have not succeeded in proving this,
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